HTTP 3.0
说到HTTP3.0,我觉得有必要了解一下HTTP1.0/1.1/2.0协议,毕竟HTTP2.0目前普及的网站还不是很多。
HTTP/1.0 —— 无状态无连接的应用层协议
- 无状态:服务器不跟踪不记录请求过的状态
- 无连接:浏览器每次请求都需要建立tcp连接
HTTP/1.0规定浏览器和服务器保持短暂的连接。浏览器的每次请求都需要与服务器建立一个TCP连接,服务器处理完成后立即断开TCP连接(无连接),服务器不跟踪每个客户端也不记录过去的请求(无状态)。无状态导致的问题可以借助cookie/session机制来做身份认证和状态记录解决。
然而,无连接特性将会导致以下性能缺陷:
- 无法复用连接。每次发送请求的时候,都需要进行一次TCP连接,而TCP的连接释放过程又是比较费事的。这种无连接的特性会导致网络的利用率非常低。
- 队头堵塞(Head Of Line Blocking)。由于HTTP/1.0规定下一个请求必须在前一个请求响应到达之前才能发送。假设一个请求响应一直不到达,那么下一个请求就不发送,就会导致阻塞后面的请求。
HTTP/1.1
- 长连接。HTTP/1.1增加了一个Connection字段,通过设置Keep-alive(默认已设置)可以保持连接不断开,避免了每次客户端与服务器请求都要重复建立释放TCP连接,提高了网络的利用率。如果客户端想关闭HTTP连接,可以在请求头中携带Connection:false来告知服务器关闭请求
- 支持请求管道化(pipelining)。基于HTTP/1.1的长连接,使得请求管线化成为可能。管线化使得请求能够“并行”传输。举个例子来说,假如响应的主体是一个html页面,页面中包含了很多img,这个时候keep-alive就起了很大的作用,能够进行“并行”发送多个请求。
需要注意的是,服务器必须按照客户端请求的先后顺序依次回送相应的结果,以保证客户端能够区分出每次请求的响应内容。也就是说,HTTP管道化可以让我们把先进先出队列从客户端(请求队列)迁移到服务端(响应队列)。
如图所示,客户端同时发了两个请求分别来获取html和css,假如说服务器的css资源先准备就绪,服务器也会先发送html再发送css。
换句话来说,只有等到html响应的资源完全传输完毕后,css响应的资源才能开始传输。也就是说,不允许同时存在两个并行的响应。
可见,HTTP/1.1还是无法解决队头阻塞(head of line blocking)的问题。同时“管道化”技术存在各种各样的问题,所以很多浏览器要么根本不支持它,要么就直接默认关闭,并且开启的条件很苛刻...而且实际上好像并没有什么用处。
虽然HTTP/1.1支持管道化,但是服务器也必须进行逐个响应的送回,这个是很大的一个缺陷。实际上,现阶段的浏览器厂商采取了另外一种做法,它允许我们打开多个TCP的会话。此外,HTTP/1.1还加入了缓存处理,新的字段如cache-control,支持断点传输,以及增加了Host字段(使得一个服务器能够用来创建多个Web站点)。
HTTP/2.0
(1)二进制分帧
HTTP/2 采用二进制格式传输数据,而非 HTTP/1.x 的文本格式,二进制协议解析起来更高效。 HTTP / 1 的请求和响应报文,都是由起始行,首部和实体正文(可选)组成,各部分之间以文本换行符分隔。HTTP/2 将请求和响应数据分割为更小的帧,并且它们采用二进制编码。
(2)多路复用
- 同域名下的所有通信都在单个连接中完成。
- 单个连接可以承载任意数量的双向数据流。
- 数据流以消息的形式发送,而消息又由一个或多个帧组成,多个帧之间可以乱序发送,因为根据帧首部的流标识可以重新组装 这一特性,使性能有了很大的提升
- 同个域名只需要占用一个TCP连接,消除了因多个TCP连接而带来的延时和内存消耗。
- 单个连接上可以并行交错地请求和响应,之间互不干扰。在HTTP/2中,每个请求都可以带一个31bit的优先值,0表示最高优先级, 数值越大优先级越低。有了这个优先值,客户端和服务器就可以在处理不同的流时采取不同的策略,以最优的方式发送流、消息和帧。 可见,HTTP/2.0实现了真正的并行传输,它能够在一个TCP上进行任意数量HTTP请求。而这个强大的功能则是基于“二进制分帧”的特性。
(3)服务器推送
服务端可以在发送页面HTML时主动推送其它资源,而不用等到浏览器解析到相应位置,发起请求再响应。例如服务端可以主动把JS和CSS文件推送给客户端,而不需要客户端解析HTML时再发送这些请求。
服务端可以主动推送,客户端也有权利选择是否接收。如果服务端推送的资源已经被浏览器缓存过,浏览器可以通过发送RST_STREAM帧来拒收。主动推送也遵守同源策略,服务器不会随便推送第三方资源给客户端。
(4)头部压缩
在HTTP/1.x中,头部元数据都是以纯文本的形式发送的,通常会给每个请求增加500~800字节的负荷。
比如说cookie,默认情况下,浏览器会在每次请求的时候,把cookie附在header上面发送给服务器。(由于cookie比较大且每次都重复发送,一般不存储信息,只是用来做状态记录和身份认证)。HTTP/2.0使用encoder来减少需要传输的header大小,通讯双方各自cache一份header fields表,既避免了重复header的传输,又减小了需要传输的大小。高效的压缩算法可以很大的压缩header,减少发送包的数量从而降低延迟。
HTTP/3.0
上文提到 HTTP/2 使用了多路复用,一般来说同一域名下只需要使用一个 TCP 连接。但当这个连接中出现了丢包的情况,那就会导致 HTTP/2 的表现情况反倒不如 HTTP/1 了。
因为在出现丢包的情况下,整个 TCP 都要开始等待重传,也就导致了后面的所有数据都被阻塞了。但是对于 HTTP/1.1 来说,可以开启多个 TCP 连接,出现这种情况反倒只会影响其中一个连接,剩余的 TCP 连接还可以正常传输数据。
那么可能就会有人考虑到去修改 TCP 协议,其实这已经是一件不可能完成的任务了。因为 TCP 存在的时间实在太长,已经充斥在各种设备中,并且这个协议是由操作系统实现的,更新起来不大现实。基于这个原因,Google 就另起炉灶搞了一个基于 UDP 协议的 QUIC 协议,并且使用在了 HTTP/3 上,HTTP/3 之前名为 HTTP-over-QUIC,从这个名字中我们也可以发现,HTTP/3 最大的改造就是使用了 QUIC。QUIC 虽然基于 UDP,但是在原本的基础上新增了很多功能
(1)多路复用
虽然 HTTP/2 支持了多路复用,但是 TCP 协议终究是没有这个功能的。QUIC 原生就实现了这个功能,并且传输的单个数据流可以保证有序交付且不会影响其他的数据流,这样的技术就解决了之前 TCP 存在的问题。
同HTTP2.0一样,同一条 QUIC连接上可以创建多个stream,来发送多个HTTP请求,但是,QUIC是基于UDP的,一个连接上的多个stream之间没有依赖。比如下图中stream2丢了一个UDP包,不会影响后面跟着 Stream3 和 Stream4,不存在 TCP 队头阻塞。虽然stream2的那个包需要重新传,但是stream3、stream4的包无需等待,就可以发给用户。
另外QUIC 在移动端的表现也会比 TCP 好。因为 TCP 是基于 IP 和端口去识别连接的,这种方式在多变的移动端网络环境下是很脆弱的。但是 QUIC 是通过 ID 的方式去识别一个连接,不管你网络环境如何变化,只要 ID 不变,就能迅速重连上。
(2)加密认证的报文
TCP 协议头部没有经过任何加密和认证,所以在传输过程中很容易被中间网络设备篡改,注入和窃听。比如修改序列号、滑动窗口。这些行为有可能是出于性能优化,也有可能是主动攻击。
但是 QUIC 的 packet 可以说是武装到了牙齿。除了个别报文比如 PUBLIC_RESET 和 CHLO,所有报文头部都是经过认证的,报文 Body 都是经过加密的。这样只要对 QUIC 报文任何修改,接收端都能够及时发现,有效地降低了安全风险。
(3)向前纠错机制
QUIC协议有一个非常独特的特性,称为向前纠错 (Forward Error Correction,FEC),每个数据包除了它本身的内容之外,还包括了部分其他数据包的数据,因此少量的丢包可以通过其他包的冗余数据直接组装而无需重传。向前纠错牺牲了每个数据包可以发送数据的上限,但是减少了因为丢包导致的数据重传,因为数据重传将会消耗更多的时间(包括确认数据包丢失、请求重传、等待新数据包等步骤的时间消耗)。
假如说这次我要发送三个包,那么协议会算出这三个包的异或值并单独发出一个校验包,也就是总共发出了四个包。当出现其中的非校验包丢包的情况时,可以通过另外三个包计算出丢失的数据包的内容。当然这种技术只能使用在丢失一个包的情况下,如果出现丢失多个包就不能使用纠错机制了,只能使用重传的方式了。
(4)0-RTT
通过使用类似 TCP 快速打开的技术,缓存当前会话的上下文,在下次恢复会话的时候,只需要将之前的缓存传递给服务端验证通过就可以进行传输了。0RTT 建连可以说是 QUIC 相比 HTTP2 最大的性能优势。那什么是 0RTT 建连呢?
这里面有两层含义:
1.传输层 0RTT 就能建立连接。
2.加密层 0RTT 就能建立加密连接。
上图左边是 HTTPS 的一次完全握手的建连过程,需要 3 个 RTT。就算是会话复用也需要至少 2 个 RTT。
而 QUIC 呢?由于建立在 UDP 的基础上,同时又实现了 0RTT 的安全握手,所以在大部分情况下,只需要 0 个 RTT 就能实现数据发送,在实现前向加密的基础上,并且 0RTT 的成功率相比 TLS 的会话记录单要高很多。
总结
- HTTP/1.x 有连接无法复用、队头阻塞、协议开销大和安全因素等多个缺陷;
- HTTP/2 通过多路复用、二进制流、Header 压缩等等技术,极大地提高了性能,但是还是存在着问题的;
- QUIC 基于 UDP 实现,是 HTTP/3 中的底层支撑协议,该协议基于 UDP,又取了 TCP 中的精华,实现了即快又可靠的协议。